

High Performance Computing at The Molecular Foundry

David Prendergast Theory of Nanostructured Materials Facility The Molecular Foundry LabTech2014 dgprendergast@lbl.gov

September 10, 2014

- Knowledge-based user facility that provides state-of-the-art expertise and instrumentation in nanoscale science in a safe environment
- Multidisciplinary research institute at the forefront of nanoscale science

Foundry Expertise & the 50/50 Model

Molecular Foundry Scientific Organization

National Center for Electron Microscopy (NCEM)
Electron microscopy and nanocharacterization

Organic and Macromolecular Synthesis Soft materials: organics, macromolecules, polymers and their assemblies

Biological Nanostructures

New bio-materials; new probes for bioimaging; synthetic biology techniques

Inorganic Nanostructures

Science of semiconductor, carbon and hybrid nanostructures

Theory of Nanostructured Materials
Studies to guide understanding of new principles, behavior and experiments

Nanofabrication

Advanced lithographic and thin-film processing techniques

Imaging and Manipulation of Nanostructures

Characterization and manipulation of nanostructures

Scientific Research Themes

Combinatorial Nanoscience

Functional Nanointerfaces

Multimodal Nanoscale Imaging

Single-Digit Nanofabrication and Assembly

User Demographics: FY10-present

Recent Industry Users

Porifera

MERCK

Research Laboratories

Molecular (**Foundry**

Connection to Other Parts of LBNL

Over 37% of Molecular Foundry publications involve use of other LBNL user facilities and programs (FY12-current)

Advanced Light Source (ALS)

National Energy Research Scientific Computing Center (NERSC)

National Center for Electron Microscopy (NCEM)

Other LBNL programs

High Performance Computing Services (HPCS) and dedicated compute clusters

24/7 access to dedicated resources vital for development and application

Test-bed for new technology

courtesy: Gary Jung, HPCS

Theory of Nanostructured Materials Facility

... from electrons to assemblies

Developing fundamental understanding of energy-relevant phenomena and materials at the nanoscale, with a focus on electronic transport, computational spectroscopy, and self-assembly.

Statistical mechanics
Ab initio forcefield development
Coarse-grained modeling

Whitelam

Electronic core-level excitations Molecular Dynamics Simulated X-ray Spectroscopy Prendergast

Electronic excited state methos Electron transport Weak interactions

Neaton

Recognized hard problems:

Weak interactions
Strong correlations
Excited states and dynamics
Nonequilibrium phenomena
Self-assembly and growth

time

Modeling Biomimetic Polymer Self-Assembly

Automated Biopolymer Synthesis Robots Foundry staff Ron Zuckermann

New Force-Fields for Peptoid Simulation Foundry staff Steve Whitelam

Battery Function at Working Interfaces

baitery Function at working interfaces

Typical demise of lithium-sulfur battery

- Discharge: $16Li^+ + 16e^- + S_8 -> 8Li_2S$
- Stepwise(?): $2Li^+ + 2e^- + S_8 \rightarrow Li_2S_8$... Li_2S_6 , Li_2S_4 , Li_2S_2 ... LiS_3 (radicals)

Li-S batteries Issues

- Both Li₂S and S₈ are insulators conducting contact
- Multi-step reactions at cathode: creates various Li₂S_x

Evers, Nazar, Acc. Chem. Res. (2012)

- Li₂S_x species are soluble in electrolyte
- Parasitic shuttle reactions at anode

Problem: Loss of active cathode material Infinite charging

Experimental S K-edge XAS spectra of Li₂S_x dissolved in polyglymes

Stoichiometric mixtures of sulfur (S₈) and lithium sulfide (Li₂S)

$$Li_2S + (x-1)/8 S_8 -> Li_2S_x$$

Can we associate a given spectral fingerprint (color of XAS) with the existence of the corresponding molecular species?

Conclusions: S K-edge XAS of Li₂S_x in TEGDME

Two main features:

pre-edge – <u>terminal sulfur atoms</u>

main-edge – <u>internal sulfur atoms</u>

General red-shift with increasing length

Increasing S-S bond lengths

Increase in intensity ratio

More internal -S- atoms

Pascal, et al. J. Phys. Chem. Lett. 2014, 5, 1547-1551

Functionalized semiconductors for solar harvesting: Dye-Sensitized Solar Cells (DSCs)

Exploring charge dynamics at the dye-substrate interface (Oliver Gessner (LBNL), Foundry User Project)

Using pump probe X-ray spectroscopy:

- explore charge state of specific atoms
- correlate with charge transfer
- extract device dynamics

Requires ultrafast light source

X-ray Free Electron Laser (LCLS@SLAC)

Requires well controlled sample

- DSC's inherently complex

What insights can theory/simulation provide?

Hybrid functionals point to "Interfacial State" interpretation

Drivers for Theory and Simulation at the Foundry

Expertise from electrons to assemblies

Algorithmic and Use-Inspired Development

Computing Resources

Online Tools and Web-based HPC

User Support/High Throughput

Web-based tools

Goal: To enhance User experience and throughput by providing access to unique computational tools running on high performance computing (HPC) resources

Specific Tool: WebXS – interpretation of X-ray absorption spectra

Web-based tools

Goal: To enhance User experience and throughput by providing access to unique computational tools running on high performance computing (HPC) resources

Specific Tool: WebXS – interpretation of X-ray absorption spectra

National Energy Research Scientific Computing Center

Molecular Foundry

What is this?

Home AL

ALS Simulation Portal Si

Energy 302.15

Save This Spectra To MFTheory Database

Simulation Tools -

Welcome davegp

Logout

James Wonsever

Structure Database

Draw Molecule

Submit Calculations

Running Calculations

Finished Calculations

Spectrum Database

http://sourceforge.net/ projects/jsmol/

Flot

http://www.flotcharts.org/

Get States

(eV)

Jmol Option	s:	
View Model	1	•
Animate	Unitcell Save IMG POV	1

View States: Load Custom State

Atom|Model|State|Ev|Str
C32|1|257|289.03|22.6951 Run View
C30|1|257|289.03|22.69477 Run View
C29|1|257|289.03|22.6947 Run View

HTML5/javascript jQuery, AJAX, php

https://portal.nersc.gov/project/mftheory/webtools/WebXS/index.php

http://portal.hpcs.lbl.gov/webtools/WebXS

